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Abstract

DNA methylation comprises a cumulative record of lifetime expo-
sures superimposed on genetically determined markers. Little is
known about methylation dynamics in humans following an acute
perturbation, such as infection. We characterized the temporal
trajectory of blood epigenetic remodeling in 133 participants in a
prospective study of young adults before, during, and after asymp-
tomatic and mildly symptomatic SARS-CoV-2 infection. The differ-
ential methylation caused by asymptomatic or mildly symptomatic
infections was indistinguishable. While differential gene expression
largely returned to baseline levels after the virus became unde-
tectable, some differentially methylated sites persisted for months
of follow-up, with a pattern resembling autoimmune or inflamma-
tory disease. We leveraged these responses to construct
methylation-based machine learning models that distinguished
samples from pre-, during-, and postinfection time periods, and
quantitatively predicted the time since infection. The clinical tra-
jectory in the young adults and in a diverse cohort with more
severe outcomes was predicted by the similarity of methylation
before or early after SARS-CoV-2 infection to the model-defined
postinfection state. Unlike the phenomenon of trained immunity,
the postacute SARS-CoV-2 epigenetic landscape we identify is
antiprotective.
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Introduction

An individual’s pattern of DNA methylation contains a lifetime

record of environmental exposures and has been associated with

increased risk for various autoimmune, neurological, and meta-

bolic diseases. Methylation-based signatures have been reported

to have higher predictive value for future health outcomes than

polygenic risk scores (preprint: Thompson et al, 2022; Yousefi

et al, 2022). DNA methylation has been used to construct lifelong

methylation clocks that predict chronological age and all-cause

mortality (Horvath & Raj, 2018; Lu et al, 2019). While methyla-

tion has been linked to diverse phenotypes in association studies,

densely sampled longitudinal data that capture intraindividual

methylation changes have been limited (Furukawa et al, 2016;

Chen et al, 2018).
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Here, we investigate methylation patterns and dynamics during

asymptomatic and mildly symptomatic SARS-CoV-2 infection in

healthy young adults. While alterations in blood DNA methylation

have been reported after symptomatic SARS-CoV-2 infections

(Balnis et al, 2021; Castro de Moura et al, 2021; Corley et al, 2021;

Konigsberg et al, 2021; Zhou et al, 2021), our prospective longitudi-

nal study captures the dynamics of methylation changes following

asymptomatic infection, giving insights into the long-term memory

of environmental exposure and potential disease associations.

Results

Methylome changes after infection

The prospective COVID-19 Health Action Response for Marines

(CHARM) study enrolled new US Marine recruits at the beginning of

training between May 11 and September 7, 2020. Study participants

were assessed periodically, including testing for SARS-CoV-2 by

nasal swab PCR and blood sampling during an initial 2-week super-

vised quarantine and subsequent basic training (Letizia et al, 2021;

Fig 1A and see Materials and Methods). The cohort was predomi-

nantly of European ancestry, male, and physically fit, with an aver-

age age of 19.77 � 2.45 years (Fig EV1). We analyzed longitudinal

blood transcriptome and methylome data obtained from 133 recruits

who became infected during the study. All infections were either

mildly symptomatic (n = 65) or asymptomatic (n = 68), and none

required hospitalization.

The blood samples were grouped relative to the day of first diag-

nosis into the following periods (see Fig 1A): (i) Control (preinfec-

tion), (ii) PCR+, which included First (time of first PCR-positive test)

and Mid (period of subsequent PCR-positive tests), (iii) EarlyPost

(virus clearance indicated by PCR-negative tests continuing up to

45 days from First), (iv) LatePost (PCR-negative tests more than

45 days from First). Several thousand differentially expressed genes

(DEG) were seen at the time of first diagnosis compared with prein-

fection control levels (Dataset EV1). The number of DEG detected at

EarlyPost vs. Control was greatly reduced, and few were detected by

LatePost. The total number of differentially methylated sites (DMS) in

blood DNA peaked later than the DEG, and a large number of DMS

were still observed in the periods after PCR positivity (Fig 1B).

Changes in blood cell-type proportions occur during SARS-CoV-2

infection (Liu et al, 2020), which may affect the detection of DEG and

DMS. Computational cell-type deconvolution of both the RNA-seq

and methylation data showed concordant changes in the predicted

proportions of B cells, T cell subtypes, and NK cells following infec-

tion (Appendix Fig S1). The number of DEG and DMS detected over

time were similar when analyzing raw data, when correcting for

changes in cell-type proportions, and when summarizing up- and

downregulation events separately (Figs 1B and EV2A, and

Datasets EV1–EV4). These conclusions were robust to changes in the

computational framework used to infer cell proportions (Appendix

Figs S5 and S6). However, we cannot exclude the possibility that

some of the differences we observe correspond to changes in the fre-

quency of a cell type that is not accounted for in computational cell-

type deconvolution methods. Comparison of gene expression and

methylation levels between the asymptomatic and symptomatic sub-

groups at each time period showed a maximum of one DEG at false

discovery rate (FDR) < 0.05, no significant methylation differences,

and high correlation between the level of regulation (normalized

delta beta values, Figs 1C and EV2B, and Datasets EV5 and EV6).

Because the molecular responses following mildly symptomatic and

asymptomatic infections in this cohort were indistinguishable, these

groups were combined for all subsequent analyses. We next exam-

ined the changes of the genes and methylation sites that were signifi-

cantly altered at Mid compared with Control. When these gene and

methylation levels were plotted at all time periods, the genes over-

lapped with Control levels following clearance of the virus (Figs 1D

and E, and EV2C). By contrast, the methylation changes were more

prolonged both for sites associated with DEG and for sites not associ-

ated with DEG (Figs 1D and E, and EV2C).

Methylation site dynamics

When the methylation levels of all DMS were aligned by day relative

to the initial PCR-positive test and clustered hierarchically using

dynamic time-warping distance, three hypomethylation (Clusters

1–3) and 4 hypermethylation (Clusters 4–7) trajectories were

observed (Fig 2A). To evaluate whether the clusters distinguished by

time trajectories could reflect different mechanisms, we assessed

enrichment for various properties (See schematic, Fig EV3A), includ-

ing nearby transcription factor binding sites (TFBS), pathways, Blue-

print Epigenome project cell-type signatures (Stunnenberg

et al, 2016), cell-type proportions, association with single-cell

sequencing-derived cell-type markers, CpG island categories, gene

region feature categories, CG/GC content, and distance to transcrip-

tion start site (Fig EV3B–I). When the 200-bp regions centered on

the DMS in each cluster were analyzed for TFBS enrichment using

the HOMER motif database (Duttke et al, 2019), each of the three

hypomethylation clusters and three of the four hypermethylation

clusters showed enrichment of distinct TFBS for each cluster

(Fig 2B). We also found that the DMS in each cluster was enriched

in Blueprint cell-type markers (Fig EV3B). Among the hypomethy-

lated clusters, early changes were generally associated with myeloid

cell signatures and later changes with mature lymphocytes

(Fig EV3B). Cluster 3, which contained sites showing prolonged

hypomethylation, was enriched in mature B cell lineage signatures,

including plasma and germinal center cells (Fig EV3B). This finding

was concordant with the TFBS enrichment analysis, which showed

the association of Cluster 3 with the germinal center regulator BCL6

(see Fig 2B). In addition, the genes annotated to the DMS in each

dynamical cluster were enriched for specific MSigDB canonical

(Liberzon et al, 2011) and hallmark (Liberzon et al, 2015) pathways

(Fig 2C). These findings indicate that the temporal dynamics clus-

ters are biologically coherent, and suggest that the regulation of

DMS within each cluster involves the activation of different path-

ways and relies on distinct sets of transcription factors that contrib-

ute to the targeting of the methylation regulatory machinery.

SARS-CoV-2 methylation clock

We next investigated the potential for DNA methylation dynamics to

predict the time since infection. We used a nested cross-validation

procedure to generate an elastic net regression model trained on the

methylation data to predict the day since infection. The training proce-

dure for all modeling is shown schematically in Fig EV4C. Model
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predictions were highly correlated with the actual day since infection

(Fig 3A). To examine the accuracy of methylation-based prediction

over time and to determine the sites most important for predictions at

different postinfection periods, we trained separate models on all CpG

sites for samples from different time windows and determined which

sites were most often selected by 100 model iterations for each win-

dow. The models showed predictive power for all five-time windows

examined (Fig 3A) The most important methylation sites for

predicting different time windows showed little overlap, indicating

that the methylation patterns continue to evolve months after the ini-

tial infection (Fig 3B). We next examined the accuracy of binary classi-

fication models to distinguish between pairs of Control, PCR-positive,

EarlyPost, and LatePost periods (Fig 3C). The models for distin-

guishing preinfection and postinfection groups showed the highest

accuracy, and all iterations for all classification problems performed

above chance. We constructed a multiclass classifier that assigned

each sample to its time period with high accuracy, ranging from an

area under the receiver operator curve (AUC) of 0.88 for the two Post

periods to 0.96 for Control (Fig 3D). One limitation of our study is that

most participants were male. To determine whether these analyses

were applicable to females, we examined the classification of the male

and female participants in our dataset separately. We compared the

multiclass classifier performance in the 31 samples from the 11 female

participants (Appendix Fig S2A) and in the 397 samples from the 122

male participants (Appendix Fig S2B). Overall, the samples from both

sexes were classified with similar accuracy, although the confidence

intervals for females were wide due to small sample size.

Relationship to other conditions

In order to characterize the specificity and generalizability of methyla-

tion changes observed during SARS-CoV-2 infection we examined

whether a model trained to distinguish post PCR+ samples (EarlyPost

and LatePost combined) from Control could also distinguish other

conditions associated with altered immunological states. Between

mid-April and mid-May 2020, an outbreak of SARS-CoV-2 occurred in

several companies during basic training at Parris Island, SC. Although

few cases were confirmed by PCR testing, a retrospective serological

study of exposed recruits was performed (Sah et al, 2021). Using DNA

methylation from samples obtained in mid-July 2020 about 10 weeks

after exposure, from 71 seropositive and 20 seronegative recruits, the

model assignment of Control and post PCR+ correlated with serological

status (receiver operator curve AUC = 0.7, FDR = 0.016; Fig 4A and B,

and Dataset EV7). This indicates that seropositive and seronegative

recruits who were exposed to SARS-CoV-2 can be distinguished

retrospectively by their methylation states. Most of the infected recruits

in the longitudinal study were first PCR-positive following the 2-week

supervised quarantine and the first few weeks of basic training. Using

longitudinal samples from recruits who remained PCR-negative at a

time of training control study, we found that the model did not distin-

guish the quarantine and basic training samples (Fig 4A).

We next examined the classification of samples from infections

and inflammatory diseases (Dataset EV8). We found that the model

did not distinguish samples from before and 4 weeks after H3N2 influ-

enza challenge (Fig 4A, and Datasets EV9 and EV10). Significant clas-

sification accuracy was obtained in distinguishing control samples in

each dataset from systemic lupus erythematosus (SLE), multiple scle-

rosis, chronic hepatitis C virus infection, rheumatoid arthritis, inflam-

matory bowel disease, and hepatitis C virus infection, as well as for

high vs. low levels of chronic human immunodeficiency virus infec-

tions (Fig 4A and B). Significant accuracy was not achieved for classi-

fying asthma, Sjogren’s syndrome, respiratory allergies, tuberculosis

infection, and chronic obstructive pulmonary disease (Fig 4A). To fur-

ther examine the relationship of the postinfection methylation state

induced by SARS-CoV-2 to that associated with other diseases, we

determined the enrichment of postinfection DMS in the CHARM study

to those reported in studies of other diseases. Significant enrichment

was observed between EarlyPost period DMS and the HCV study, an

HIV study, and two SLE studies (Fig 4C). The LatePost DMS was sig-

nificantly enriched in one of the two SLE studies (Fig 4D). Comparing

the postinfection SARS-CoV-2 DMS and the studies showing enrich-

ment by order of significance of DMS showed a high overlap between

the DNA hypomethylation sites in SARS-CoV-2 and those in SLE

(Fig 4E). Seven of the eight most significant EarlyPost DMS that were

assayed in either of two SLE datasets were included in the top 10 DMS

identified in the SLE methylation studies, and six of the most signifi-

cant LatePost DMS were among the 14 most significant sites identified

in one of the SLE studies (Fig 4E).

Overall, we find that our methylation model has considerable

overlap with other inflammatory conditions including chronic infec-

tion and autoimmune diseases and is most similar to SLE. This is

consistent with the observation that the changes we observe are

related to the modulation of interferon signaling, which is activated

in SLE (Ronnblom & Leonard, 2019).

Immunological effects of prolonged methylation pattern and
relevance to a more diverse cohort

Epigenetic regulation following infection has in some instances been

found to convey protection against subsequent infection challenge,

◀ Figure 1. Prolonged blood DNA methylation changes in asymptomatic and mild SARS-CoV-2 infections.

A Schematic of the SARS-CoV-2 study design and alignment of human subjects by infection timing. Examples of 3 subject trajectories are shown arranged by study time
(top) and infection pseudotime, aligned by diagnosis (bottom).

B Number of DMS or DEG in each pseudotime period vs. preinfection controls (nominal P < 10�4). Numbers were either corrected for cell-type proportions or uncor-
rected. See Fig EV2.

C Scatter plots of differential methylation at the sites in (B) for asymptomatic (n = 68) vs. mild (n = 65) infections. For each differential contrast, we first selected DMS in
Fig 1B (all subjects) that were also differentially methylated (FDR < 0.05) within symptomatic or asymptomatic groups. See Fig EV2B.

D Principal component analysis of the Mid vs. Control DEG or DMS (with FDR < 0.05 and fold change > 1.5 for DEG) at all time periods. Other DMS, are DMS that do
not map to a DEG. We note that for gene expression, Post time points are very close to Control, while this is not the case for methylation. Moreover, the pattern is
similar for DEG-associated and other differential probes.

E Scatter plots of differential expression (log2 fold change) or methylation (normalized delta beta) at the indicated periods for the DEG and DMS in (D). Performed
assays were RNA-seq and methylation microarray, and the limma method was applied for differential analysis of either dataset.
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Figure 2. Characteristics of differential methylation following SARS-CoV-2 infection.

A Z-scored levels at DMS clustered by temporal trajectory relative to the first PCR-positive test. Plotted is the average of each cluster over time.
B Enrichment of TFBS by cluster within a 200-bp window centered at each DMS.
C Top five pathways showing enrichment of DMS-associated genes in each cluster. (B, C) FDR < 0.05 for at least one cluster. Fold = fold enrichment.

� 2023 The Authors Molecular Systems Biology 19: e11361 | 2023 5 of 16

Weiguang Mao et al Molecular Systems Biology



Figure 3. SARS-CoV-2 infection methylation clock.

A Top, Regression model predicting time since infection. Bottom, Correlation and significance of models restricted to shorter time windows. The results shown were
trained with mean squared error but are depicted as a correlation plot to facilitate interpretation.

B Comparison of the 10 most frequently utilized sites when regression models are repeatedly generated for each time window.
C Accuracy of binary blood methylation classification models as the AUC, in distinguishing samples from preinfection, infection, and postinfection pseudotime periods.
D Accuracy of blood methylation multiclass classifier in classifying samples from time periods relative to infection.
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a phenomenon referred to as trained immunity (Netea et al, 2020).

On a mechanistic level, trained immunity is attributed to a permis-

sive epigenetic state that allows for faster upregulation of chemo-

kines and receptors needed to mount an immune response. Trained

immunity has been invoked to explain infection-induced protection

in animals that lack an adaptive immune system and cross-

pathogen protection. The longitudinal nature of our cohort com-

bined with a well-defined postinfection methylation state enabled us

to evaluate indirectly whether the postinfection methylation state

we define is protective against infection (Fig 5A).

We reasoned that prior to infection, the methylation patterns in

subsequently infected longitudinal study participants vary in their

relative similarity to the methylation signatures post PCR positivity.

In other words, the control samples could already be in a

postinfection-like state, for example as a result of infection with a

different infectious agent or another immune challenge such as vac-

cination. We note that the SARS-CoV-2 vaccine was not available at

the time of this study. Thus, as a quantification of the similarity of

preinfection control samples to the patterns seen following infec-

tion, we used the probability of these samples being misclassified to

the active infection period (PCR+), the early period following infec-

tion (EarlyPost), or the later period following infection by the multi-

class classifier (Fig EV5A).

We next examined whether similarity to the postinfection methyla-

tion state at baseline was predictive of the future response to SARS-

CoV-2 infection. Because symptoms were so sparse in this cohort, we

used the minimum SARS-CoV-2 PCR cycle (negated to indicate viral

load in arbitrary units) as a measure of the effectiveness of controling

the virus infection. We examined the relationship of the preinfection

sample misclassification probabilities to the subsequent level of the

virus. We note that nearly all samples are, in fact, correctly classified

by the model. We use the term “misclassification” here to reflect

merely the quantitative probability obtained from the model of classi-

fying the samples as belonging to the wrong class. Probabilities of

these samples being misclassified as active infection or LatePost were

not significantly associated with viral load (Fig EV5B). The probabili-

ties of the preinfection samples being misclassified as EarlyPost were

associated with having higher maximal levels of virus detected by

PCR (P = 0.001, Spearman rank correlation; Fig 5B). This result dem-

onstrates that baseline methylation values are indeed predictive of

future infection response. An identical analysis using gene expression

did not yield significant results (Appendix Fig S3), supporting a key

role of the methylation-encoded epigenetic state.

However, while we demonstrate a clear predictive power for

baseline methylation, the direction of association is the opposite to

that found in trained immunity. If the postinfection-like state were

protective, we would expect it to correlate with lower viral loads.

Notably, we find the opposite result (Fig 5B). This result can be con-

firmed by looking at individual features that contribute to our Early-

Post model. Among the top 16 CpG sites used by the model, we

highlight two hypomethylated sites in IFI44L, which were individu-

ally inversely correlated with virus level (Fig 5B). These results sug-

gest that individuals having preinfection blood methylation patterns

similar to that characteristic of the post-PCR-positive period showed

a less effective suppression of SARS-CoV-2 during infection.

In order to evaluate the generalizability of these findings to a

more diverse cohort, we applied our postinfection model to a SARS-

CoV-2 infection dataset from a different cohort having a broader age

range (50.6 � 17.2), more balanced sex composition (70 female, 92

male) and that included severe outcomes (Konigsberg et al, 2021).

We found that the postinfection probability calculated on methyla-

tion state early in the disease course was significantly associated

with disease severity and death (Fig 5C), further supporting the

hypothesis that the state we identify is associated with reduced

effectiveness of the immune response to SARS-CoV-2 infection.

We also applied our postinfection model to an in vivo and in vitro

methylation study of BCG vaccination, one of the best-characterized

perturbations for inducing trained immunity (Bannister et al, 2022).

We found that the similarity to the SARS-CoV-2 postinfection state

was not significantly changed when comparing either the in vivo or

the in vitro (Fig 5D) pre- and post-BCG infection samples, further

supporting the view that the epigenetic state we identify is distinct

from trained immunity.

While the mechanistic details need to be further elucidated, we can

hypothesize about the reasons for these contradictory findings. Both

our gene expression and methylation data are heavily dominated by

interferon-related genes and loci. Many interferon-induced genes

(ISGs) have well-characterized antiviral activity and provide protec-

tion on the cellular and organismal levels (McNab et al, 2015). How-

ever, a growing body of evidence suggests that interferon signaling

provides important immunoregulatory functions (Lee & Ashkar, 2018),

and the effects of interferons on infection susceptibility are complex

and context-dependent (McNab et al, 2015). Indeed, in our study,

some of the most persistent hypomethylated loci are located near

IFI44L and FKBP5 (Fig 1E), two genes that have been shown to nega-

tively regulate antiviral responses (DeDiego et al, 2019a, 2019b).

Together, these observations suggest that the epigenetic memory we

observe may in fact reflect an interferon regulatory feedback state that

correlates with reduced capacity for viral suppression. If this were the

case, we would expect that the probability of being in a postinfection-

like state as defined by our model should increase with the number of

infections and thus with age. We confirm this conjecture in several

◀ Figure 4. Post-SARS-CoV-2 infection methylation pattern comparison with other conditions.

A Performance of a binary classifier trained to distinguish postinfection (EarlyPost or LatePost) vs. controls in other datasets. * marks current study datasets. “SARS-
CoV-2 Sero� vs. Sero+”: retrospective study dataset of Marine recruits exposed during late March-early April 2020, assayed for blood DNA methylation in mid-July,
and distinguished by SARS-CoV-2 serology status. “Arrival at Quarantine vs. Later”: PCR-negative study participants upon arrival vs. later during training. See Mate-
rials and Methods for details.

B Receiver operator curve and significance of AUC for datasets showing FDR < 0.05 in panel (A).
C, D Enrichment of 20 most significantly hypomethylated DMS ranked by absolute delta beta values relative to top hypomethylated DMS in EarlyPost (C) or LatePost (D)

vs. Control.
E Top-ranked hypomethylated DMS upon SARS-CoV-2 infection compared with other diseases showing enrichment in (C, D). Sites identified both in the SARS-CoV-2

study and at least one other condition are highlighted. Light gray sites were ranked in this study but not assayed in other studies. Gene annotations are indicated.
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large cohorts of methylation data and find a similar relationship in

both males and females (Fig 5E and Appendix Fig S4). Overall, our

results support the formulation that the baseline methylation state,

but not gene expression, is predictive of response to subsequent infec-

tion challenge. However, the state we identify following SARS-CoV-2

infection is antiprotective and represents an epigenetic phenomenon

that is distinct from trained immunity.

Discussion

Our study provides a fine grain characterization of the temporal

dynamics of methylation changes following an acute perturbation.

Our results indicate that in immune-naive healthy young adults,

asymptomatic and mild SARS-CoV-2 infections induced prolonged

alterations of DNA methylation. The dynamics of these methylation

changes observed during several months of follow-up were used to

develop a methylation clock that accurately predicts time since

infection. These results suggest that in addition to the lifetime meth-

ylation clocks that have been described, the methylome may also

contain a record of the timing of individual acute environmental

exposures.

These dynamic epigenetic processes may have important impli-

cations for health and disease. In the context of immunological

stimuli, methylation and other induced epigenetic changes can pro-

vide faster induction of immune responses, thus benefiting host

defense (Netea et al, 2020). We find that the postinfection methyla-

tion signature we define is related to other pro-inflammatory condi-

tions such as chronic infections and autoimmune diseases, with

the association being particularly strong for Systemic Lupus Erythe-

matosus (SLE). Strikingly, we find that contrary to the trained

immunity phenomenon, in this cohort the presence of an early

postinfection-like methylation state prior to infection is antiprotec-

tive for the SARS-CoV-2 infection that occurred subsequent to

these baseline measurements. This potentially deleterious effect of

SARS-CoV-2 infection may be relatively short-lived as we found

that the presence of a late postinfection-like methylation state prior

to infection showed only a nonsignificant trend towards being anti-

protective. The persistence of SARS-CoV-2-induced methylation

changes and their functional effect, if any, beyond the several

months duration of the present investigation requires additional

study. An increased subsequent infection risk has also been

observed following other primary infections, such as measles

(Behrens et al, 2020). We further find that the presence early after

SARS-CoV-2 infection of a methylation state that is similar to the

post-SARS-CoV-2 infection methylation state defined by our model

is associated with poorer outcomes in a more diverse cohort. We

speculate that the state we define using our study is related to a

regulatory feedback process that downregulates interferon activity

and results in reduced viral suppression. Overall, our results sug-

gest that the persistent SARS-CoV-2 methylation we identify repre-

sents a dysregulated epigenetic state.

Materials and Methods

Sources of samples for analysis

COVID-19 Health Action Response for Marines (CHARM) study
We obtained samples as part of the prospective COVID-19 Health

Action Response for Marines (CHARM) study, which followed pre-

dominantly male, US Marine recruits after a 2-week home quaran-

tine. A second supervised 2-week quarantine followed, which

included SARS-CoV-2 mitigation measures such as mask-wearing

and social distancing, along with daily temperature and symptom

monitoring. At the time of arrival at quarantine, CHARM study par-

ticipants were tested for SARS-CoV-2 infection via quantitative

polymerase-chain-reaction (qPCR) assay of nasal swab specimen

and evaluated for baseline SARS-CoV-2 IgG seropositivity, defined

as a dilution of 1:150 or more on receptor-binding domain and full-

length spike protein ELISA. SARS-CoV-2 infection and COVID-19-

related symptoms or any other unspecified symptoms were assessed

at weeks 1 and 2 of quarantine. Study participants included Marines

who had three negative PCR tests during quarantine and a baseline

serum serology test that indicated them as either seropositive or

seronegative for SARS-CoV-2. As recruits went on to basic training

at Marine Corps Recruit Depot-Parris Island SC, PCR tests were

performed at weeks 2, 4, and 6 in both seropositive and seronega-

tive groups. Additionally, a baseline neutralizing antibody titer was

measured on all subsequently seropositive participants, and a

follow-up symptom questionnaire was provided. We also collected

PAXgene blood samples for RNA-seq analysis and EDTA blood sam-

ples for DNA methylation analysis from PBMCs. All samples were

frozen at �80°C after collection prior to processing for RNA-seq and

◀ Figure 5. Persistent methylation state predicts future infection trajectories.

A Schematic illustration of the trained immunity phenomenon and expectations of possible protective and antiprotective effects of the post-SARS-CoV-2 methylation
state.

B Correlation between maximum relative viral level during infection and the probabilities of misclassification as EarlyPost (Left) using the multiclassifier model (see
Fig 3D); correlation of two hypomethylated IFI44L sites with viral load (Right). A.U., arbitrary units, calculated as 80-(minimum cycle threshold PCR result) for each
participant. See Fig EV5B for plots of the correlation of misclassification probabilities for the other infection periods.

C Postinfection-like state is significantly associated with negative outcomes following SARS-CoV-2 infection in an older cohort with severe outcomes. As infection out-
comes and postinfection probabilities (see panel E) are both associated with age, age was regressed out from the input methylation data for this analysis, showing
these results are independent of subject age. The boxplot displays the 25th, 50th, and 75th percentiles, with whiskers that extend up to 1.5 times the interquartile range
or the range of the data, whichever is smaller. P-values are from the Wilcoxon rank-sum test.

D There is no significant difference comparing samples following BCG vaccination of human subjects or BCG stimulation in vitro with respect to the model prediction
probabilities as post-SARS-CoV-2 infection. The boxplot displays the 25th, 50th, and 75th percentiles, with whiskers that extend up to 1.5 times the interquartile range
or the range of the data, whichever is smaller. P-values are from the Wilcoxon rank-sum test.

E Applying the multiclass classifier on a reference methylation cohort shows a strong positive correlation between age and prediction probabilities as Post. Results are
comparable in males and females.
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methylation analysis. Additional details regarding CHARM study are

described in Letizia et al (2021). Notably, researchers had access to

de-identified PCR data.

Retrospective study of US marines
Marine recruits in training at Marine Corps Recruit Depot-Parris

Island SC who were in companies exposed to SARS-CoV-2 during a

cluster occurring from Mid-March to Mid-April 2020 were later

enrolled in a retrospective blood sampling study. Only a few study

participants had been tested for SARS-CoV-2 at the time of the cluster.

Samples were obtained approximately 6 and 10 weeks after exposure,

with the 10-week samples analyzed for the present study. EDTA

blood samples were used for DNA methylation analysis from PBMCs.

Additional details regarding this study and the serological analysis of

these samples are described in Ramos et al (2021). Notably, mild

symptoms included runny nose, sore throat, cough, subjective fever,

headache, chills, and nausea (see table 1 in Ramos et al, 2021).

Influenza challenge study
Samples were analyzed from the placebo vaccination group from an

influenza H3N2 (A/Belgium/2417/2015) virus human challenge

model study. DNA methylation analysis was performed using cryo-

preserved PBMC collected from 41 participants before the challenge

and 28 days after the challenge for each subject. Additional study

details can be found at trial NCT03883113 at clinicaltrials.gov.

Protection of human subjects
Institutional Review Board approval was obtained from the Naval

Medical Research Center (protocol number NMRC.2020.0006) in

compliance with all applicable US federal regulations governing the

protection of human subjects. All participants provided written

informed consent, and the experiments conformed to the principles

set out in the WMA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report.

Data production

RNA isolation and cDNA library preparation
Total RNA from PAXgene preserved blood was extracted using the

Agencourt RNAdvance Blood Kit (Beckman Coulter, Indianapolis,

IN) on a BioMek FXP Laboratory Automation Workstation

(Beckman Coulter). Concentration and integrity (RIN) of isolated

RNA were determined using the Quant-iTTM RiboGreenTM RNA

Assay Kit (Thermo Fisher) and an RNA Standard Sensitivity Kit

(DNF-471, Agilent Technologies, Santa Clara, CA, USA) on a Frag-

ment Analyzer Automated CE system (Agilent Technologies),

respectively. Subsequently, cDNA libraries were constructed from

total RNA using the Universal Plus mRNA-Seq kit (Tecan Geno-

mics, San Carlos, CA, USA) in a Biomek i7 Automated Workstation

(Beckman Coulter). Briefly, mRNA was isolated from purified

300 ng total RNA using oligo-dT beads and used to synthesize

cDNA following the manufacturer’s instructions. The transcripts

for ribosomal RNA (rRNA) and globin were further depleted using

the AnyDeplete kit (Tecan Genomics) prior to the amplification of

libraries. Library concentration was assessed fluorometrically using

the Qubit dsDNA HS Kit (Thermo Fisher), and quality was

assessed with the HS NGS Fragment Kit (1–6,000 bp; DNF-474,

Agilent Technologies).

RNA sequencing and preprocessing of the RNA-seq data
Following library preparation, samples were pooled and preliminary

sequencing of cDNA libraries (average read depth of 90,000 reads)

was performed using a MiSeq system (Illumina), to confirm library

quality and concentration. Deep sequencing was subsequently

performed using an S4 flow cell in a NovaSeq sequencing system

(Illumina; average read depth ~ 30 million pairs of 2 × 100 bp

reads) at New York Genome Center.

Methylation data
All samples were frozen at �80°C after collection prior to processing

for methylation analyses. Genomic DNA was extracted from cryo-

preserved PBMC or blood collected in EDTA tubes using Genfind V3

(Beckman Coulter) on a BioMek FXP Laboratory Automation Work-

station (Beckman Coulter). All DNA samples were quantified using

both absorbance (NanoDrop 2000; Thermo Fisher Scientific, Wal-

tham, MA) and fluorescence-based methods (Qubit; Thermo Fisher

Scientific) using standard dyes selective for double-stranded DNA,

minimizing the effects of contaminants that affect the quantitation.

DNA methylation was quantified using Illumina Infinium Human

Methylation EPIC Bead Chip array (Illumina Inc., San Diego, CA)

according to the manufacturer’s instructions at the University of

Minnesota Genomic Center. Briefly, 500 ng of DNA from each sam-

ple was treated with sodium bisulfite, using the EZ-96 DNA

Methylation-Gold kit (Zymo Research, CA, USA). The bisulfite-

converted amplified DNA products were denatured into single

strands and hybridized to the Illumina Infinium Human Methylation

EPIC Bead Chip array (Illumina Inc.). The hybridized BeadChips

were stained, washed, and scanned for the intensities of the un-

methylated and methylated bead types using Illumina’s iScan Sys-

tem. The DNA methylation beta values were obtained from the raw

IDAT files by using the ChAMP package in R. Samples from the

same individual were processed together across all experimental

stages to negate any methodological batch effects.

Data processing and quality assessment

RNA-seq
The RNA-seq reads were converted from raw RSEM counts to the

final gene-level quantification following the pipeline in Fig EV4A.

We only included protein-coding genes and filtered out low-

expressed genes based on the mean expression levels. Overall, we

had 11,436 genes left after filtering.

Methylation
We adopted the ChAMP pipeline (Tian et al, 2017) to process the

raw (IDAT) files from Illumina Methylation microarray platform.

The normalization steps and probe filtering criterion are illustrated

in Fig EV4B. We applied ComBat (Johnson et al, 2007) in the M-

value space to regress out potential technical covariates including

Array (EPIC array), Slide (EPIC array), and batches (EPIC array

plates). Then, we converted methylation levels of 707,361 CpG sites

from M-values to beta values for all downstream differential methyl-

ation analysis and modeling. The regression of cell-type proportion

to remove the confounding effect used for clustering was performed

in both beta value and M-value space, with the results obtained in

M-value space shown in Fig 2 (see Materials and Methods, Sub-

section Temporal clustering).
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For both RNA-seq and methylation samples, only samples from

subjects who were PCR- and serology-negative when enrolled in the

study were kept for the downstream analysis (Fig EV1). We further

filtered out samples if they were outliers in the principal component

(PC) space. We calculated the Mahalanobis distances to the center

in the PC space of the first five principal components correspond-

ingly. As the distances follow a chi-square distribution, samples

with significant P-values (0.01 divided by the number of samples

included in the test) were classified as outliers. In total, there were

two methylation samples, and three RNA-seq samples excluded

from downstream analysis.

Computational inference of cell-type proportions

Methylation
We estimated the proportions of six major cell types (B cells, Granu-

locytes, Monocytes, NK cells, CD4 T cells, and CD8 T cells) using a

standard reference-based method (Houseman et al, 2012). We took

the original CellType450K basis matrix and replaced the values with

those from (Roy et al, 2021; Illumina Methylation microarray). This

was done to help remove bias induced by the platform inconsis-

tency. We compared cell-type specificity obtained with the updated

basis matrix to that obtained using the standard Houseman

et al (2012) basis. We found that the cell-type specificity blocks

were preserved and in some cases actually improved in the updated

matrix. In particular, we find that the hypomethylated values are

generally lower in the new basis (Appendix Fig S9A and B). The

overall correlation of the standard basis values against the updated

basis values is nearly perfect (Appendix Fig S9C).

The differential methylation site analysis was performed on raw

beta values using these cell-type proportions as covariates (see

Materials and Methods, Sub-section Differential gene and methyla-

tion site analysis). For clustering analysis, we created a cell-type-

corrected matrix by regressing out cell-type proportions first (see

our elaboration in Sub-section Temporal clustering). The machine

learning models used the raw beta value matrix (see Sub-

section Machine learning models).

RNA-seq
Our key goal for proportion inference was to ascertain whether the

major trends in our data such as more prolonged alterations in DNA

versus RNA were insensitive to cell proportion correction. As pro-

portion estimation from RNA and methylation differs greatly in

terms of robustness and the number of cell types that can be esti-

mated (methylation is more robust while RNA can be used to esti-

mate some rare cell types) in order to formulate a fair comparison

we correct both modalities for the same cell proportion estimates.

We used the methylation estimated proportions as a gold standard.

For RNA samples with no matching methylation, the proportions

were imputed using a simple machine learning model. We used

genes included in Cibersort LM22 (Newman et al, 2015) to train an

elastic net model (Friedman et al, 2010; a = 0.9, 10-fold CV) to pre-

dict the inferred cell-type proportions based on paired methylation

data. Then, we selected lambda corresponding to the minimum

cross-validation error to generate predictions for the complete RNA-

seq data. Similarly, we regressed out inferred cell-type proportions

by linear regression from the uncorrected gene expression profiles.

The gene expression profiles that were corrected for cell-type

proportions would be used for some downstream analysis. We find

that using alternative methods of proportion estimation including a

newly published methylation basis with 12 cell types (Salas

et al, 2022) and CIBERSORTx (Newman et al, 2019) did not alter the

main conclusions. We produce alternative versions of Fig 1B, which

shows the timing of methylation and RNA changes, using different

proportion estimation methods and find that the overall trend is

unchanged (Appendix Fig S5). We also visualize cell proportion dif-

ferences across time points in Appendix Fig S6.

Differential gene and methylation site analysis

We adopted limma (Ritchie et al, 2015) to perform differential anal-

ysis for both methylation data and RNA-seq data. We noted that

many methylation probes with similar time trajectory patterns had

highly variable value ranges. To account for this, we transformed

the beta values into z-scores. Subsequent methylation analysis was

performed using limma in this standardized space. Because the stan-

dardization is a linear transformation, it does not affect the signifi-

cance of the limma linear model coefficients. The differential output

from the limma analysis is referred to as log fold change for the

RNA data and as normalized delta beta for the methylation data.

We included age and sex as biological covariates in the limma

models when cell-type proportions were not corrected. When cell-

type proportions were corrected, the proportions of six major cell

types (Monocyte%, Bcell%, Gran%, CD4T%, CD8T%, NK%) were

also included as biological covariates. The raw P-values were

corrected by the Benjamini–Hochberg (BH) method, and the signifi-

cance cutoff of FDR < 0.05 was applied.

Comparison of methylation after symptomatic and
asymptomatic infections

The participant symptom category (symptomatic, asymptomatic)

was determined by the result of temperature screening and a 14-

symptom questionnaire obtained concerning the week prior to each

study visit. For details, see Letizia et al (2021). Responses covering

up to 2 weeks before and after the initial PCR-positive test were

used for group assignment. We performed differential analysis com-

paring these symptomatic and asymptomatic participants separately

for each time period (Control, First, Mid, EarlyPost, and LatePost;

see Datasets EV5 and EV6).

Temporal clustering

We clustered CpG sites, which were aligned to the first PCR-positive

day for each subject (Fig 2A). We only included time points with

more than four associated samples, giving 20 time points. The beta

value matrix was first corrected for cell-type proportions (we investi-

gated different methods for performing this step, as detailed below).

After correction, we fitted a loess (local polynomial regression

fitting) curve for each CpG site, then we discretized the fitted curve

and only kept the values corresponding to the 20 unique time points.

We clustered CpG sites with respect to these discrete time series,

and we evaluated the similarity of each pair of time series using

dynamic time-warping distance (Leodolter et al, 2021). Dynamic

time-warping is an algorithm that calculates the optimal matching

between two time series (Liu & Muller, 2003; Leng & Muller, 2006).
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It measures similarity based on overall trajectory, regardless of

speed. These characteristics make it beneficial for clustering differ-

ential features according to their temporal trajectory patterns. The

warping window size was set to be 20. The distance matrix was

squared and then used as input for the hierarchical clustering step

(Ward’s minimum variance method, seven clusters). In summary,

our temporal clustering analysis includes four consecutive steps: (i)

Correct for cell-type proportions, (ii) Smooth the normalized data by

local polynomial regression fitting, (iii) Calculate the dynamic time-

warping distance matrix, and (iv) Run hierarchical clustering using

the distance matrix as input.

We investigated two different approaches to correct for the cell-

type proportions: The first approach named B2M2B is to first con-

vert the beta value matrix to M-value matrix, regress out cell-type

proportions in the M-value space by linear regression, and convert

the M-value matrix back to the beta value space. We also considered

an alternative approach where cell-type proportions are directly

regressed out in the beta value space, and we name this approach

B_regress (see Appendix Fig S7A). We chose between these two

normalization strategies (B2M2B vs. B_regress) by running through

the same pipeline detailed above with all hyperparameters fixed in

steps (2–4) and comparing all the intermediate outputs side by side.

First, B2M2B and B_regression generated nearly identical beta value

matrices after correcting for cell-type proportions (see Appendix

Fig S7B). Next, the corresponding dynamic warping distance matri-

ces were also highly correlated (see Appendix Fig S7C). Finally, we

compared the cluster assignments after running through the hierar-

chical clustering step. Due to the NP-hard nature of the hierarchical

clustering problem, Ward’s minimum variance method tried to min-

imize the total within-cluster variances (SSE) in a heuristic manner

in practice, and the different initializations might end up with differ-

ent local optimal solutions. B_regress resulted in a larger total

within-cluster variance (SSE) (see Appendix Fig S7A), indicating

that the corresponding cluster assignment was indeed less tight

compared with that based on B2M2B. From the perspective of the

clustering optimization problem, the B2M2B cluster assignment is a

better solution. We also investigated the biological coherence of the

resulting clusters using the downstream enrichment pipeline (see

Materials and Methods, Sub-section Enrichment analysis by tempo-

ral cluster). We found that the B2M2B cluster assignment was also

more biologically coherent, as the corresponding transcription factor

(TF) enrichment results identified unique enriched TFs for all seven

clusters, whereas the B_regress analysis failed to identify unique

TFs that were significantly enriched with Cluster 2, 6 and 7 (see

Fig 2 and Appendix Fig S8). We show the clustering analysis and

annotations based on the B2M2B method in Fig 2 and the parallel

analysis using B_regress in Appendix Fig S8.

Enrichment analysis by temporal cluster

These enrichment analyses comparing each cluster with the other

clusters with respect to both discrete phenotypes, continuous phe-

notypes, and transcription factor binding sites are presented in Figs 2

and EV3.

Pathway/cell markers and discrete phenotype enrichment analysis
We first mapped DMS to associated genes based on Illumina Methyl-

ation microarray annotation. If multiple DMS were mapped to the

same gene, the corresponding gene would be only included as fore-

ground or background once. We combined canonical pathways and

hallmark pathways from MsigDB (v7.4) (Liberzon et al, 2011, 2015)

together to formulate a comprehensive pathway set. The other dis-

crete phenotypes included cell markers (scRNA-seq; Stuart

et al, 2019), gene region feature categories, and CpG island catego-

ries. We adopted the hypergeometric test by cluster to conduct

enrichment analysis.

Continuous phenotype enrichment analysis
For each DMS, we collected four different categories of continuous

phenotypes. The first category was the Blueprint Epigenome project

cell-type signatures (Stunnenberg et al, 2016). We downloaded the

bigWig file matching “CPG_methylation_calls.bs_call.GRCh38” from

Blueprint. Beta values corresponding to EPIC array probes were

extracted using bwtool (Pohl & Beato, 2014). Missing values were

imputed using knn.impute and the replicates were mean summa-

rized. CpG levels were z-scored to define relative cell-type specific-

ity. We calculated the spearman rank correlations between one hot

encoding of the cluster membership of all DMS and the corre-

sponding normalized Blueprint CpG levels to test for significant

associations. The second category was the correlation with ref-

based cell-type proportions. This was defined as the Pearson corre-

lations of DMS methylation levels and the inferred proportions of

six major cell types (B cells, Granulocytes, Monocytes, NK cells,

CD4 T cells, and CD8 T cells). The third class was the CG pattern/

GC pattern/GC ratio. The CG pattern was defined as the number of

CpG (dinucleotides) divided by N-1 (number of dinucleotide posi-

tions), and the GC pattern was defined as the number of GpC

divided by the number of dinucleotide positions. GC ratio was the

ratio of G/C mono-nucleotides. The last class was the distance of

each DMS to the closest transcription start sites (TSS). We ranked

DMS based on each class of the continuous phenotypes and

conducted the Wilcoxon rank-sum test for enrichment analysis.

Transcription factor enrichment analysis
We utilized Homer (v4.11; Heinz et al, 2010) to test the enrichment

of transcription factor binding sites by cluster within a 200 bp win-

dow centered at each DMS. The transcription factors included in the

analysis were the 440 known motifs for vertebrates included in

Homer. When the 200 bp windows of one cluster are specified as

the foreground sequences, the 200 bp windows of other clusters

were used as the background.

Enrichment analysis of reported differential CpG sites

In Fig 4C and D, we tested whether reported differentially methyl-

ated CpG sites of other diseases were enriched with respect to the

rankings in the longitudinal study. For many published studies, we

found that de novo analysis of the raw data did not replicate the

DMS rank lists reported by the authors. We reasoned that the dis-

crepancies most likely resulted from the selection of covariates, and

because the original authors had privileged knowledge about covari-

ates that may improve the analysis, we used the published DMS

calls from each study for our comparative analysis. Accordingly, we

extracted the DMS from each published manuscript and ordered

them based on the absolute delta beta values. Then, we took the top

20 hypomethylated sites and tested whether they were enriched
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given the rankings (ordered by absolute delta beta values) of signifi-

cantly hypomethylated sites (EarlyPost vs. Control or LatePost vs.

Control) from our analysis of the longitudinal CHARM study data

using the Wilcoxon rank-sum test.

Machine learning models

Overview of model construction
We utilized a nested cross-validation (Fig EV4C; Simon et al, 2003;

Teschendorff, 2019) strategy to build different prediction models for

the longitudinal study. There are two loops in the nested cross-

validation procedure where an “inner” cross-validation step is

nested inside an “outer” train-test split. The nested cross-validation

strategy eliminates the possibility of selection bias when

constructing the test-train split and more accurately estimates the

generalization error of the model.

Unless otherwise specified, there were 100 outer train-test splits.

We used the elastic net model for both regression and classification

tasks as the inner cross-validation model. The input was the raw

beta value matrix or gene expression profile without correcting for

the cell-type proportions. The average predictions reported in the

manuscript (Figs 3 and EV5B, and Appendix Fig S3, and Fig 5A)

were calculated in two steps. First, the test predictions (classifica-

tion probabilities or values of response variables) were averaged for

each sample using outer train-test splits that include this sample in

the test set. Then, we took the average predictions of all samples to

evaluate the AUC (classification) or the correlation value (regres-

sion) with respect to the ground truth. These metrics were referred

to as the average AUC and the average correlation. In order to build

a general model that is applicable to external datasets, we first

selected features that were robust (frequently selected over all outer

train-test splits) and then built the model only with these most sta-

ble features. The selection of the most stable features also limits the

number of features that will be missing when applying the model

trained on our 850 K EPIC data to the 450 K platform data available

in nearly all public datasets studied.

Binary classification
We constructed a binary classification model for each pair out of

four defined groups (Figs 3C and 4A and B): Control, PCR+ (combin-

ing First and Mid together), EarlyPost, and LatePost (Fig 3C). All

707,361 CpGs were included as features without preselection. 10%

of the available data were used as the test set for each outer train-

test split, and we utilized the elastic net model (glmnet

(family =“binomial”)) for the inner cross-validation step (a = 0.9, 5-

fold cross-validation).

We also built a binary classification model distinguishing Control

samples with Post samples (including both EarlyPost and LatePost

samples). All 707,361 CpGs were included as features without prese-

lection. After the nested cross-validation step, we selected features

that were most frequently utilized across outer iterations (> 90% of

all outer train-test splits, shown in Dataset EV11) to build the model

for unseen data.

Features were transformed into z-scores to build an elastic net

model (a = 0.9, 5-fold cross-validation). Features were also first

standardized before applying this pretrained model to other datasets

(Fig 4A and B). If the dataset was based on the HM450K microarray,

we imputed the CpG sites that are not available on the HM450K

microarray by all-zero vectors. We utilized the Wilcoxon rank-sum

test to estimate the significance of AUCs and we calculated the

adjusted P-values following the Benjamini–Hochberg correction.

Multiclass classification
We built a multiclass classification model with 10% of the available

data as the test set for each outer train-test split (Figs 3D and 5A). All

707,361 CpGs were included as features without preselection, and

we utilized the elastic net model (glmnet(family =“multinomial”))

for the inner cross-validation step (a = 0.9, 5-fold cross-validation).

Regression
We built a regression model using 10% of the available data as the test

set for each outer train-test split (Fig 3A). All 707,361 CpGs were

included as features without preselection, and we utilized the elastic net

model (glmnet(family =“gaussian”)) for the inner cross-validation step

(a = 0.5, 5-fold cross-validation). We repeatedly construct the regression

model for each time window following the same steps above.

Methylation-gene annotation

The CpG-gene assignment is based on Illumina Methylation micro-

array annotation (manufacturer’s manifest) for Genome assembly

GRCh37 (hg19). The manifest also includes information on gene

region feature categories and CpG island annotations. In our analy-

sis, we categorized gene region feature categories into two main

groups: promoter sites (including TSS1500, TSS200, 1st Exon, and 5’

UTR) and gene body sites (including 3’ UTR, Body, and ExonBnd

annotations). The definition of these gene region feature categories

can be found in (Illumina, 2014).

Data availability

All data needed to evaluate the conclusions in the paper are present

in the paper and/or the Supporting Information. The datasets pro-

duced in this study are available in the following databases:

• RNA-seq data: Gene Expression Omnibus GSE198449 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE198449)

• Methylation data: Gene Expression Omnibus GSE219037 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE219037)

Expanded View for this article is available online.
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